

The selective dopamine D3 receptor antagonist, SR 21502, reduces reinstatement of methamphetamine seeking in rats

Kirk Persaud², Patrick Timken¹, Daleya Parasram², Tasmia Ali², Robert Ranaldi² ¹The Graduate Center, CUNY, NY ²Department of Psychology, Queens College, CUNY, NY

Introduction

- The D3 receptor antagonist such as SR 21502 is suggested to reduce drug craving and aid in the reduction of relapse.
- The drug of abuse methamphetamine (meth) produces both reward and reinforcing effect in the brain (p<.05).</p>
- This study tested the hypothesis that the dopamine D3 receptor antagonist, SR 21502, will reduce reinstatement of methamphetamine seeking.

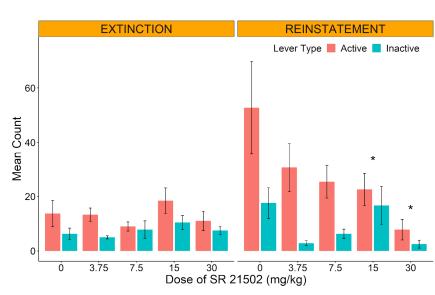

Methamphetamine Self-Administration Male Female Period + Infusion + Active - Inactive Period + Infusion + Active + Inactive Period + Infusion + Active + Inactive Period + Infusion + Active + Inactive Period

Figure 1. Methamphetamine infusions, active and inactive lever presses across 15 selfadministration session.

pres

Figure 2: Active lever presses during extinction.

Results

Figure 3: *Left Graph:* Active and inactive lever presses during the last 3 days of extinction. *Right graph:* Active and inactive lever presses during the cue-induced reinstatement test (drugseeking/relapse).

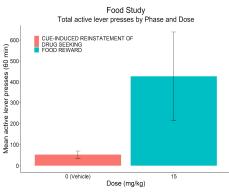
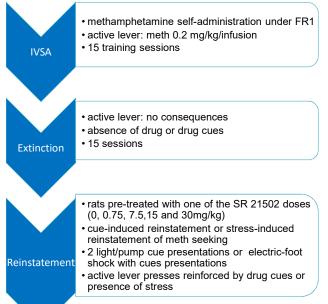


Figure 4: Active lever presses during extinction.

- A significant SR 21502 dose-related reduction in cue-induced reinstatement of lever pressing was seen at 15mg and 30mg.
- This procedure produced a robust reinstatement effect; SR 21502 reduced active lever presses.


Conclusions

 Our findings suggest that dopamine D3 antagonist SR 21502 has the potential to be an effective pharmacotherapeutic agent for methamphetamine relapse.

References

- Ewing, S., Dorcely, C., Maidi, R., Paker, G., Schelbaum, E., & Ranaldi, R. (2021). Low-dose polypharmacology targeting dopamine D1 and D3 receptors reduced relapse to heroin seeking in rats. Addiction Biology, 26(4). https://doi.org/10.1111/adb.12988
- Galaj, E., Ewing, S., & Ranaldi, R. (2018). Dopamine D1 and D3 receptor polypharmacology as a potential treatment approach for substance use disorder. *Neuroscience & Amp; Biobehavioral Reviews*, 89, 13-28. <u>https://doi.org/10.1016/j.neubiorev.2018.03.020</u>
- Peck, J., & Ranaldi, R. (2014). Drug abstinence: exploring animal models and behavioral treatment strategies. *Psychopharmacology*, 231(10), 2045-2058. doi: 10.1007/s00213-014-3517-2

Methods

